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ABSTRACT

A multiaxial,isothermal,continuum damage mechanics model for fatigueof a
unidirectionalmetal matrix composite volume element is presented. The model is
phenomenological,stressbased,and assumes a singlescalarinternaldamage variable,the
evolutionof which isanisotropic.The development of the fatiguedamage model, (i.e.,
evolutionary law) is based on the definition of an initially transversely isotropic fatigue
limit surface, a static fracture surface, and a normalized stress amplitude function. The
anisotropy of these surfaces and function,-and therefore the model, is defined through
physically meaningful invariants reflecting the local stress and material orientation. This
transversely isotropic model is shown, when taken to it's isotropie limit, to directly
simplify to a previously developed and validated isotropic fatigue continuum damage
model.

Results of a nondimensional parametric study illustrate (1) the flexibility of the .
present formulation in attempting to characterize a class of composite materials and (2)
the capability of the formulation in predicting anticipated qualitative trends in the
fatigue behavior of unidirectional metal matrix composites. Also, specific material
parameters representing an initial characterization of the composite system SiC/Ti 15-3
and the matrix material (Ti 15-3) are reported.
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Cauchy stress tensor

deviatoric stress tensor

normalized uniaxial maximum stress

normalized uniaxial mean stress
uniaxial maximum stress

uniaxial mean stress



Invariants

J2

I 1
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second invaxiant of the deviatoric stress (expressed for shear)

invariant representing transverse shear stress

invariant representing longitudinal shear stress

invariant representing maximum normal stress in the fiber direction
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Subscripts

is the ultimate normal stress or static fracture stress

normal stress endurance limit

ratio of endurance limit to static fracture stress; afl/a u

normalizing stress amplitude constant
ratio of stress amplitude constant to static fracture stress; M/a u

ratio of

ratio of

ratio of

ratio of

ratio of

longitudinal to transverse

longitudinal to transverse

longitudinal to transverse

longitudinal to transverse

longitudinal to transverse

ultimate normal stress

normal fatigue or endurance limit stress

normalizing normal stress amplitude

shear static fracture stress

shear fatigue limit stress

ratio of longitudinal to transverse shear normalizing stress amplitude

scaling factor for stress dependency in the fatigue damage exponent
parameters indicating effect of mean stress
fatigue damage variable exponent (can be a function of stress)
exponent on the normalized stress amplitude
angle between fibers and coordinate axis

( )L longitudinal properties

( )T transverse properties
o initial value

Miscellaneous
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D F
A

F f!

U

F
m

P

N

N F

unit vector denoting local fiber direction

second order direction tensor; did i
Kronecker delta function

fatigue damage variable (measure)

fatigue limit surface

static fracture surface

normalized stress amplitude function

combined hydrostatic mean stress measure
parameter in P weighting the influence of the maximum hydrostatic stress
number of cycles
number of cycles to failure

Macauley brackets



INTRODUCTION

In recent years, because of advances in scanning electron microscopy, acoustic
emission techniques, and other nondestructive testing methods, a consensus has emerged
that the nonlinear response of solids and ultimately their mechanical strength are
dependent not only on the basic structure of the material but also on the type,
distribution, size, and orientation of the defects in its structure. As a result, a
relatively new branch of continuum mechanics, known as Continuum Damage Mechanics
(CDM), has emerged. Continuum mechanics allows one to describe (over an appropriate
representative volume element) the heterogeneous microprocesses involved during the
straining of materials and structures at the macrosca/e. Similarly, CDM a/lows one to
describe the material's progressive deterioration (damage) from the virgin state (no
damage) to the final state, corresponding generally to macrocrack initiation and
propagation (or the "breaking up" of the representative volume element). Consequently,
the life-limiting macroscopic properties such as rupture strength, fatigue life, or creep
rupture lifetime of the material can be predicted.

The tracking, or description, of the evolution of damage is accomplished by the
introducing special thermodynamic (internal) field variables representing, in an
appropriate statistical sense, the local distribution and density of defects. Numerous
damage theories, both micromechanical [1--6] and phenomenological [7-11], have been
proposed and discussed in the literature. There is great diversity in the mathematical
nature of the damage variable(s) (e.g., scalar [7,12,13], vectors [14,15] and tensors
[12,16,17]), and thus the damage theories; this stems from the difficulty in directly
measuring "damage" macroscopically and the degree of approximation with which the
internal variables describe the salient aspects of the macroscopic effects of the
microdefect kinematics. For a number of excellent review articles and books on this

subject see references [7,12,18-24].
In this paper a phenomenological, isothermal, transversely isotropic, fatigue CDM

model, with a scalar damage internal variable, applicable to unidirectional metallic
composites, will be described. The present model is an extension of a previously
validated CDM model developed at ONERA (Office Nationale d'Etudes et de Recherches
Aerospatiales) [10,11,18,19,25,26,27,28] for isotropic monolithic metals. A brief review of
the CDM work of Chaboche and his colleagues at ONERA is given in reference [29l; it
provides a foundation for the present extension of the ONERA models to transversely
isotropic materials (e.g., hexagonally packed metal matrix composites).

A CDM FATIGUE MODEL FOR INITIALLY ANISOTROPIC MATER/ALS

Different damage variables are ass_iated with different damage processes, such as
creep, fatigue, ductile, and brittle damage, and have been discussed in the literature
extensively. Here we will confine ourselyes to the modeling of fatigue damage by using
a scalar damage measure. Figure 1 clearly illustrates the particular damage mechanisms
considered in this study of the fatigue of monolithic metals. In Fig. 1, the fatigue crack

initiation and growth process is illustrated schematically; the damage (DF) is associated,

macroscopically, with the initiation and propagation of transgranular defects (e.g., slip
bands and microcracks). The possible equivalence between the definition of DF by the

effective stress concept, the definition of D F in terms of the remaining life concept, and

the quantification of physical damage in terms of micro-cracking has been shown by
microcraek measurements made by Cailletaud and Levaillant [30], ttua and Socie [31],
and Socie et al. [32].

The Continuum Damage Mechanics approach, which supports the previous]y
described global measure of fatigue damage in monolithic isotropic materials, presents
two theoretical deficiencies whicTa make it inconsistent with a continuum approach: (1)
the surface character of fatigue damage and (2) the small number of large defects
present during the propagation stage. Interestingly enough however, these deficiencies do
not appear to affect its ability to correctly describe many experimental results
(performed under uniaxial loading) in terms of cumulative fatigue damage.
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Figure 1.--Different damage modes and the associated scale in a monolithic metal.

We believe that these two theoretical deficiencies can be removed by establishing a
representative volume element (RVE) on the mesostructural scale of a composite
material; then the surface character of fatigue will transfer to the interface region of
each constituent (or phase), and the number of large defects occurring during the
propagation period will similarly increase. This hypothesis was borne out by observation
of experiments conducted under specific thermal and mechanical loading histories [33,34].
There are, however, a number of surface and environmental effects which will not
necessarily transfer to the fibers, for example those effects that are associated with
oxidation in the SiC/Ti 15-3 system [35]. A nonrigorous definition of an RVE for a
given composite material is given in Fig. 2.. In Short, it requires that the RVE include
a sufficient number of unit cells to allow (statistically) the heterogeneous nature of the
material to be homogenized.

Figure 3 is the extension of Fig. 1 to the mes0scale; it illustrates the
mesostructural damage (i.e., the microcracks and mesocracks) that might result when a
composite material is subjected to fatigue loading. Here, damage mechanisms similar to
those on the microstructural scale are postulated to occur on the mes0struCtural sea/e;
the surface or interface of a constituent (the fiber) plays the role (on the mesostructural
scale) of the grain boundary of a constituent (grain) on the microscopic scale.
Furthermore, because of the internal structure of the material, a sufficient number of
defects will be present, thus allowing a theoretically consistent :continuum representation
of fatigue damage to be constructed. :....

In addition to matrix cracking and the formation of microcracks around the fibers,
other damage modes must be included, such as fiber breaking, fiber/matrix debonding,
and interlaminar cracking. It has been noted that damage occurs in the form of
different multiple cracking modes and that there is no isolated single crack that
dominates the development of damage. Similarly in composite laminates, damage develops
along preferred orientations; for example, matrix cracks in off-axis plies typically are
channeled by the fibers in those plies and interlaminar planar cracks grow along fibers in
the neighboring plies [36].

4
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scale.

These direction-oriented damage modes suggest the need for a direction--dependent
damage vat/able (e.g., a vector or tensor). Here, however, on the basis of the s_rong
initial anisotropy of the composite, we assumed that the damage measure is a scalar,
with the e_olu_ion of damage being aniso_ropic and associated with the preferred direction



of the material. For example, if the composite is loaded in the fiber direction, the
evolution of damage would be small relative to the case in which the composite is
loaded normal to the fiber. However, because of the assumed scalar measure, the
distribution of damage would be identical in all directions. Thus the accumulation but
not the magnitude of damage is direction dependent. The approach taken to model this
damage was the stress based approach detailed in references [12] and [29], wherein the
definition of effective stress and the coficept of remaining life were utilized to measure
and interpret damage.

Multia_al Statement

The ONERA model was extended by introducing anisotropic damage surfaces with
appropriate stress invariants [37-39] representing stress states that are likely to strongly
influence the various damage modes in metallic composites. For instance, we assumed
(1) that the transverse shear stress (I1) and thus implicitly the transverse normal stress,

dictates matrix cracking; (2) that the longitudinal shear stress (I2) dictates interfacial

degradation; and (3) that the maximum normal stress (I3) in the fiber direction dictates

fiber breakase. In this way, we believe that the following fatigue limit and static
fracture surfaces and the normalized stress amplitude function contain the most pertinent
damage-producing stress measures. Let

= _ I2+ 9IF 0 (4_j-1)I1 T/( )
(1)

where the fatigue limit S_fface t is defined as

Ff,_- 1 = _ max max Fq_[aij(t)kel" "" - ,---a-'j(t0)]- 1
t t o

(2)

the static fr_tctur¢ surface is

1 - Fu = 1 - max F(u)[aij(t)]

and the normalized stress hmplitude is;

(3)

Fm = Fm(aij) = 2 max max {F(m)[aij(t) - ¢ij(to)]) (4)
t t o

The subscript ( ) in Eq.(1) is to be replaced by either fl, u, or m. Material parameters
(some of them varying with the mean stress) that describe the initial anisotropy of the
surfaces are defined as follows:

flL %; mL ML; uL •__ = = O'UL,

zlft = rftL[rflT; Tim = vmL/rmT; 7/u = vUL/rUT;

wf! = f/L/f/_T; wm = ML/MT; wu = UL/U T

1The authors acknowledge that not all monolithic materials exhibit a marked fatigue or
endurance limit (e.g., nonferrous alloys); however we assume (on the basis of
experimental evidence [40]) that a sufficiently large class of composite materials will
possess such a limit. Fu;thermore, we assert that fatigue lives beyond some specified

value, say 107 , can be considered infinite for most practical design purposes and thereby
allow the assumption of an endurance limit.



Note that the subscripts L and T denote, respectively, the longitudinal (along the fiber)
and transverse (normal to the fiber) directions.

The physically meaningful invariants I1, I2, and 13, respectively, are defined as (cf.

[39,41]);
1

I1 = J2- i + T I3 (5)

12 = i - IS (_)

= 1213

in which
1

J2 - 2 Sij Sij

I = Dij Sij

= Dij Sjk Ski

Dij = didj
I

Sij = aij--3 akk _ij

(8)

and di (i = 1, 2, 3) represents the components of a unit vector denoting the local fiber

direction.
Now, from the fatigue limit, and static fracture surfaces and normalized stress

amplitude function we can formulate the multiaxial representation of the extended
fatigue damage evolutionary law; this is valid for materials that possess initial
transversely isotropic material symmetry (e.g., hexagonally packed unidirectional
composite materials):

^

a Fm

''+1]
<Fft-1 >

with ot = 1 - a (10)

< 1-Fu>

and

where a, b, b', fl,

aft L - aflL(0 ) (1 - 3b' P) (11)

M L = M0L (1 - 3b P) (12)

af/L(0), auL , M0L are material constants and henceforth,

<X>
= 0, X<0=X, X>0

defines the Macauley bracket.
One additional modification, besides the inclusion of a preferred direction, has been

introduced into the precedinl_ fatigue damage model: a hydrostatic stress measure P that
combines both the Sines [42] and Crossland [43] criteria, that is,

P = i ¢rHmax + (I - 0 aHavg" (13)

7



where
1

aHavg = _- {max [_ii(t)]+min [aft(t)]} (14)
t t

aHmax = max [%(t)] (15)
t

are the mean hydrostatic stress and maximum hydrostatic stress, respectively.
We feel this alternate hydrostatic measure (P) is required, since a judgment about

the most applicable criterion is unavailable because of a lack of experimental data on
metallic composites. In the ONERA model, only the Sines' criterion was considered
(i.e., ( = 0). Finally, if we assume that the ratios _ft' _/ft' _u' _/u' win' and _Tm, are

each equal to one then the isotropic ONERA model is easily recovered with only a
slight modification to the coefficient a in equation (10).

Nondimensional Uniaxial Simplification

In order to conveniently examine the behavior of a variety of composite systems,
consider a uniaxial stress state a, fibers oriented at an angle 0 from the x-axis (i.e.,

di = (cos 0, sin 0, 0) in the x-y plane), and the introduction of the following

dimensionless parameters. Here both the maximum and mean stresses have been

normalized relative to the ultimate (or static fracture) stress (aUL) in the fiber direction;

that is,

ffma x

Sma x - aUL

and (16)

respectively.

B

g-
ff

u L

Thus, the uniaxial simplification of equations (9) and (10) are

dNdDF__ [l_(l_DF)fl+l]a (_,_,m)/_/2 [S(1--DF)J
(17)

and

a=l-a

where
[ 1--4"_u Smax] /

1 (4 i-i)
$'ifm = --_ {(4C#m-I) A I + _ A 2 + A 3}_/m

1 (4w}/--1)

A 2 + A 3}_ft-- _ {(4c#}(-I)A 1 + r}'_ t

( 4 wl_--I )

_'_'u= {(4_u_-1)A1 +
_u

A 2 + A3)

(18)

(19)



M L

o"

u L

L

au L

(20)

A I =

A 2 =

A 3 =

1_4
_ COS20 - _ sin20 + _ (2 cos20 - sin20) 2

cos20 -4- _ sin20- _ (2 cos20- sin20) 2

:_(2 cos29- sin20)2

(21)

Note that ML(P), aft_P),auL(P), and the w and T/ratiosare independent of all since

the modificationfactorcancels. Again, ifw0 and 170 are equal to i (i.e.,the material
is isotropic) then equations (17) and (18) become

a [. Smax--" lfldDF--.1-(I-DF)/_+I.,[ ] M L (I--D F}
(22)dN

-(sm=-sf (23)
and a= 1-a

<Su-Smax>

with Sf/(_)= Sfl(0)+[1- b $f/(0)]_"

and a= a [_]

which is identical in form to the uniaxial ONERA model I (see [29]).

Integrating equation (17) for N cycles, where Sma x and S are held fixed, leads to

[1--(i--DF)/_+I ] (l-a)
N = (1+/_) ( 1--a ) r..[qfg_,m (Smax_ _)j-/_'l (24)

By cycling the material to failure (NF), which is defined to occur when D F = 1, we
find that

= (I+_)[i-_) (25)

9



or

(26)

An expressiondescribingthe accumulationof damage (fora given loadingcycle)in
terms of the remaining life ratio can be obtained by substituting equation (25) into
equation (24) and rewriting the resulting equation:

D F = 1 - [I -(N/NF)I/(1-a)] 11(1+_) (27)

Note that the accumulation of damage is nonlinear and is also a f_ln_tion of fiber
orientation, as is the number of cycles to failure.

Similarly, if a two-level loading test is considered, one obtains, by integratin$
equation (17) in two steps, the same expression as in the case of isotropic materials:

N2/NF2 = 1 - (N1/NF1)p, p = (1 - a2)/(1 - al) (28)

, and all depend on the oricntation of the fibers (or
Here, though al, a2, NF1 NF2

conversely the load). Note that NF1 and NF2 are the failure lives (on the S-N curve)

for the first and second loading conditions, respectively; whereas N 1 is the number of

cycles applied at the first loading level and N 2 is the remaining life at the second level.

RESULTS: PARAMETRIC STUDY

Direction Independent Parameters

For an isotropic material (i.e., w0 = r/0 = 1) the effect on the S-N curve of

varying the parameters :_ _ /_, a, and the mean stress (_) was examined, see reference
[29]. To simplify and yet not limit the study, the parameters all and ML were taken

to be independent of hydrostatic stress; that is to say, b and b' (given in equations (11)
and (12)) are zero. The isotropic baseline values assumed were those corresponding to
304 stainless steel [12] (see Table 1). Because material isotropy was assumed, equation
(26) becomes

NF = _ [ S

::: : = _ --- _ _

Equation (29) suggests that if either the mean stress (b_ or fatigue ratio (_) are
modified, the load level at which an endurance limit is reached is also changed; that is,
as either value is increased so is the endurance level. Furthermore, equation (29)
indicates that translation of the S-N curve can be achieved by varying the parameters
¢g and a. Increasing ¢g has been shown (see [29]) to shift the S-N curve to the right
(increase the number of cycles to failure at a given load), whereas increasing a shifted
the S-N curve to the left (decreased the number of cycles to failure at a given load).

Thus only the product (a_£-/_), not the individual values of =a:and=A is important in
determining the life at a given load level. However, the actual value of a does
strongly affect the damage accumulation, and therefore if any other type of damage (e.g.
creep_ is present, both parameters ./Land a need to _ "determined-explicitly. - " -

10



Table 1 : Dimensionless Parameters for Isotropic and Anisotmpic Materials

Values for Baseline Values for Values for
Parameters Transversely Isotropic SiC/Ti 15-3 Ti 15-3

0.25 0.18 0.16
J¢ 4.5 14.42 7.03

3.0 1.842 2.27
a 0.1 0.065 0.230

0.0 s12 s/2
wm 5.O 11.8 1.0

wff 5.0 12.482 1.0

wu 5.0 5.5 1.0

r/m 2.0 1.0 1.0

r/ft 2.0 1.0 1.0

r/u 2.0 1.0 1.0

%L 228. 128.

Finally, from equation (29) one can deduce that perturbations in the parameter /3 will
both translate the S-N curve and affect the abruptness of the transition from infinite life
to immediate failure. Clearly, B = 0 is the lower limit and will give the most abrupt
S-N curve for a fixed set of material parameters [29].

Parameters Defining Initial Transverse isotropy

Assuming the baseline transversely isotropic material parameters given in Table 1,
we examine the modification of the S-N curve with fiber orientation (or equivalently,
load orientation relative to a fixed fiber orientation, see Fig. 4). As might be expected
(since a composite material is designed to be stronger when loaded parallel to the fiber
direction), both the static fracture strength and fatigue limit decreased with an increase
in the fiber orientation angle. The reduction in load--carrying ability is clearly
dependent on the "degree" of anisotropy and is represented in this fatigue damage model
by the w and _7 ratios in the ultimate stress (_'_¢u), fatigue limit (_'_t) and normalizing

Fiber
orientation,

_ .6--

.4 3_

(trarsversr) I I l I I I

0 1 2 3 4 5 6 7 8

log (N)

Figure 4.--Illustration of the degradation in load-life response
with variation in fiber orientation O.

ll



stress amplitude (_'$'m) (see Eq. (26)). Here, with the given baseline material

parameter set, all three anisotropic functions are considered to have the same degree of
initial anisotropy. In this section an examination of the impact of perturbing the
various anisotropic measures will be undertaken.

Equations (19) to (21) and (26) indicate that the angle dependency is manifested
through the functions A1, A2, and A3, which are associated wlth the longitudinal shear,

transverse shear, and normal stress components, respectively. This angle dependency is
clearly shown in Fig. 5. Furthermore, Fig. 5 indicates that when 0=0 ° , any changes in
the measures of anisotropy (i.e., _ or ,7) will have no effect; this suggests that initial
characterization of material parameters a, b, 8, _ and d_ as discussed in [29], be
conducted with longitudinally reinforced and loaded specimens. Similarly, when 0 = 90 ° ,
any change in the shear %trength" measures (i.e., r/u, r/fl , and r/m) will not have any

impact in the resulting S-N curves; this suggests that independent evaluation of the _au,

_afp and _m can be achieved by comparing the longitudinal and transverse specimen

response.

1.0

.6

_- A3

4t A2

.2

0 15 30 45 60 75 90

Fiber orientation, 0, deg

Figure 5.raThe angle dependency of the longitudinal shear
(A1), transverse shear (A2) and normal stress (A3) compo-
nents.

Variation of wu_.__.._ft" and oJm

Figure 6 illustrates the effect on the S-N curve (corresponding to a fiber

orientation of 0 = 15") of varying the ultimate strength ratio (Wu=auL/oUT). The

values of wu are taken to be 2, 4, 8, and 16, while all other parameters are held fixed

at the baseline values given in Table 1. As might be expected increasing the ultimate
strength ratio affects only the low cycle fatigue portion of the curve (by decreasing the
static fracture stress); the endurance limit remains unaffected. Conversely, increasing the

fatigue limit ratio (i.e., oJfl = 2, 4, 8, and 16) and holding all other parameters fixed, as

shown in Fig. 7, decreases the endurance limit and leaves the ultimate strength
unchanged. Note, that although the present model provides significant flexibility, in that
wu and _afl can be varied independently, in reality a relationship between the ultimate

strength and the endurance limit would be expected, thus placing restrictions on the
ranges of these parameters.

12
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Figure 6.mEffect on the S-N curve of varying the ratio _ou at
an angle of 15° while holding all other parameters fixed at
the baseline values.
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I
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Figure 7.mEffect on the S-N curve of varying the ratio COleat
an angle of 15° while holding all other parameters fixedat
the baseline values,
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By varying the normalizing stress ratio Wm, a horizontal translatlon of the

transition portion of the S-N curve can be obtained while the ultimate stress and fatigue

limit remain unchanged. An example is shown in Fig. 8, where _vm takes on the values

of 2, 4, 8, and 16, the fiber orientation is 15", and all other parameters again remain
fixed. Clearly, increasing the ratio shifts the S-N curve to the left thereby decreasing
the number of cycles to failure for a given load. Thus, by merely assuming different

degrees of anisotropy for the three functions _'_'u' _P and _'_m' (1) either end of the

S-N curve can be modified while the other end remains unchanged, or (2) the center
portion can be horizontally translated, while the ultimate and fatigue limit stresses
remain unchanged. This suggests that the model has sufficient flexibility to fit a broad
class of materials.

1.0 ¸

.8 f _m
/-2

/

.4

J-- / m

4 16-/

I 1 l l I I I I
0 1 2 3 4 5 6 7 8

log (N)

Figure 8.--Effect on the S-N curve of varying the ratio mm at
an angle of 15 ° while holding all other parameters fixed at
the baseline values.

The impact on the S-N curve of varying the degree of anisotropy, for example _u'

can be seen for all fiber orientation angles by plotting the functions ¢r_--_f l' _u'

and v/_-_ m. In Fig. 9 only _]'_-_u is shown versus angle of orientation 0, since the

other two functions behave similarly, except for being scaled by a multiplying factor. It

is evident in Fig. 9 that for a specified ratio wu the function _r_-_ u increases as the

angle 0 increases; however, there is an angle, depending upon the magnitude of wu, at

which this rate-of increase decreases. This explains the incrementally smaller changes in
the response curve with increasingly larger angles (i.e., variation in the S-N curve, see
Fig. 4). Finally, another important point that can be discerned from Fig. 9, is the need
for w to always be greater than or equal to 77, since if _o < r/, a minimum occurs in the
function at an angle other than zero, which violates physical reasoning.

14
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32/ /

J
0 15 30 45 60 75 90
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Figure 9.--Impact of varying ¢ou when _qu= 2.0 and all other
parameters are those in Table L

Variation of y/uZ__ft, and _m

Variation of the shear ratios gu' qfP and _m has an impact on the overaZZ trends,
but not actual magnitudes, of the S-N curve, similar to variations in the respective
normal stress ratios. Examples involving the variations of each ratio are given in [.29].
The interaction between the shear strength and the normal strength ratio is shown m
Fig. 10, for _u= 5.0, and _u = 1, 1.5, 2, 3, 4, and 5; and in Fig. 11, for _u=16.0 and

_7u = 1.0, 1.5, 2, 4, 8, and 16. Note how in both figures the shape of the function

_'_u is greatly affected, particularly for low values of 7. Also it is clear that when _ =

1, a maximum at some intermediate an_le is obtained. The ramification of this
intermediate maximum is unknown at this time. As with the cases involving the

normal stress ratios _u and _'l ' one would expect a relationship to exist between Vu

and _fl such that the practical ranges of these parameters are not independent.

20--

16--

12 --

8 - 11u

1.0

I I I 1
0 15 30 45 60 75 90

Fiber orientation, (}, deg

Figure 10.--Impact of varying _u when ¢ou= 5.0 and all other
parameters are those in Table I,
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8

4 \
x--16
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0 15 30 45 60 75 90

Fiber orientation, 0, deg

Figure 11.--Impact of varying qu when cou = 16.0 and all other
parameters are those in Table L

CHARACTERIZATION EXPERIMENTS

The required exploration and characterization experiments for the present model are
completely described in [29]. Here, we want to briefly touch on the testing required,
both in tension and tors|on in the longitudinal and transverse directions, to define the

extent of initial anisotropy (i.e., the ratios _u' r/u' _afp r/fp win, and r/m) of a

hexagonally packed unidirectional composite material. Figure 12 illustrates schematically
the expected S-N curves for a composite material loaded longitudinally (0 = 0') and
transversely (0 = 90 °) at a given mean stress. From such data, as well as the
associated shear S-N curves, the various _a and r/ ratios can be determined. Note that
in the present theory, /_, a, and b are assumed to be independent of fiber orientation
(i.e., di). This assumption may need to be modified if experimental evidence suggests
otherwise.

Clearly, the four S-N curves (Fig. 12, repeated once for tension and once for
shear) as well as other experiments discussed in [29] suggest a significant, and poten-
tially quite expensive, experimental program. This experimental program may, however,
be able to be reduced and augmented through numerical simulation by using a suitable
homogenization technique with periodic boundary conditions. Furthermore, utilization of
a homogenization technique should allow micromechanical effects (e.g., bond strength,
volume fraction, etc.) to be included in this phenomenological theory, through the

parameters aUL , _rf/L, Vu, r/u, _fl' and r/f/.

Recently, a model metal matrix composite system (i.e., SiC/Ti 15-3) and matrix
material (i.e., Ti 15-3) were used in the correlation of the present fatigue CDM model.
Figure 13 shows both the correlations (lines) and the experimental data (symbols) for a
35 fiber %, longitudinal and transverse'composite and the Ti 15-3 matrix material at
427"C. Table 1 lists the specific individual material parameters used. As suggested

earlier, the longitudinal response was used to obtain the constants a, /7, ML, auL , and

aft L. Then while these constants were held fixed, the three transverse data points

were fit to obtain the "strengths" of anisotropy, tau, wfl, and wm. Note that the shear

ratios, r/u , r/f/, and r/m were all assumed to be 1.0 (i.e., isotropic in shear) and the
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effect of mean stress on the fatigue limit and stress amplitude (M) was neglected (i.e.,
b=0) because of the lack of data. Finally, in Fig. 13, the solid square symbol
associated with the 90' response was not used in the correlation data set for the
composite response and therefore represents a check on the predictive capability of the
present model at the coupon level. The accuracy is within a factor of 2.

o'uT

Grmd __'-0
O'ut_ "__0° (longitudinal)

J " _ O'feL

I
_e = 90°(transverse) _fe

0 1 2 3 4 5

log (N)

Figure12,--ExpectedS-N curvesfora unldirectional
metalliccomposite loaded longitudinally(e= O)and

transversely(e= 90).

25O

200

__ 150
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Fiber Experimental Calculated
orientation,

6,

deg

0 •
90 _k

Matrix only • m. m

Prediction •

_ _'_L-.._A._•

0 1 2 3 4 5 6 7

log (Nf)

Figure 13.--Correlation of CDM model with SiC[1"i-15-3 com-
posite and Ti-15-3 matrix coupon data.
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CONCLUSIONS

An isothermal,multiaxial,continuum damage mechanics model for fatigueof a
unidirectionalmetal matrix composite volume element has been Presented. The intended
applicationsare reinforcedstructuresin which the fiberdirectionmay vary throughout
but in which a singlefiberdirectioncan be identifiedlocally(localtransverseisotropy)
within a given volume element. The model is phenomenological,stressbased,and
assumes a single scalar internal damage variable, whose evolution is anisotropic and is
associated with the initiation and propagation of transgranular defects.

The development of this model (i.e., the fatigue damage evolutionary law) is
founded on the definition of an initially transversely isotropic fatigue limit surface, static
fracture surface and a normalized stress amplitude function. The anisotropy of the
model is defined through physically meaningful invariants reflecting the local stress and
material orientation. The model has been shown, when taken to its isotropic limit, to
directly simplify to a previously developed and validated fatigue continuum damage
model.

Results of a nondimensional parametric study illustrate (1) the flexibility of the
present formulation in attempts to characterize a large class of composite materials and
(2) the ability of the formulation to predict anticipated qualitative trends in the fatigue
behavior of unidirectional metal matrix composites. Additionally, an example correlation
of a metal matrix composite system (i.e., SiC/Ti 15-3) and metal matrix material (i.e.,
Ti 15-3) was shown.

Two potential drawbacks to the present formulation are (1) the scalar damage
measure employed and (2) the potentially expensive experimental program required.
Future work in this area will include an examination of the present formulation's
usefulness in predicting the fatigue life of high-temperature applications; initiation of an
experimental characterization and validation program; and the numerical implementation
into a post processing life prediction computer code.
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